Syntheses of Cyclic and Acyclic Bis(perfluoroalkylthio)nitronium Salts

Alois Haas and Alfred Waterfeld*

Lehrstuhl für Anorganische Chemie II der Ruhr-Universität Bochum, D-44780 Bochum, Germany

Received September 5, 1994

Key Words: Nitronium ions / One-electron oxidation / Superacidic systems

 $(F_3CS)_3N$ (1) is oxidized quantitatively by AsF_5 to the first bis(perfluoroalkylthio)nitronium salt $(F_3CS)_2N^+AsF_6^-$ (2). Addition of halide ions (F^-, Cl^-, Br^-, I^-) to the cation of 2 destroys the S-N-S chain. $(F_2CSCl)_2$ undergoes with ammonia a cyclization reaction to $S-CF_2-CF_2-S-N-H$ (3), which can be derivatized with F_3CSCl or $(F_2CSCl)_2$ to $S-CF_2-CF_2-S-N-SCF_3$ (3a) and $(S-CF_2-CF_2-S-N-SCF_2-)_2$

(3b), respectively. Oxidation of 3a with AsF_5 yields ($\overline{S-CF_2-CF_2-S-N^+AsF_6^-}$ (4) and byproducts, which suggest formation of a $\{3a\}^{+\bullet}$ radical cation as an intermediate in this reaction. Pure 4 is accessible by reaction of 3 with AsF_5 in 54% yield. The chemical and spectroscopic properties of the new species are discussed.

The first bis(halogenthio)nitronium ion was prepared and identified by Glemser and coworkers in 1969 by the reaction of NSF₃ with BCl₃^[1] (eq. 1). More efficient procedures for the preparation of this cation were later found with a variety of anions like AlCl₄^[2,4,5], SbCl₆^[2,4], AsF₆, SbF₆^[3,5,6], FeCl₄^[4,5], F₃CSO₃⁻, and SeCl₆^{2-[6]}. The only bis(bromothio)nitronium ion was generated by the addition of Br₂ to the S=N=S⁺ cation^[7] (eq. 2). Similar ions with one perfluoroalkyl group instead of a halogen atom are accessible by addition of R_fS-Cl [R_f = F₃C, (F₃C)₂C=N] to the triple bond of the N=S⁺ cation but no further data are given^[3].

The chemistry of the ClSNSCl⁺ ion comprehends dehalogenation with $SnCl_2^{[8]}$ and [2 + 3] cycloadditions of alkynes and alkenes^[9] (eqs. 2-4).

Results and Discussion

We have recently shown that F₃CS-substituted methanes are oxidized by AsF₅ to yield stable carbenium ions^[10]. This type of reaction is not restricted to (trifluoromethylthio)carbons but applies also to nitrogen analogs. Thus, (F₃CS)₃N (1)[11], which must be purified from all contaminations having donor abilities by treatment with BCl3 before use, is oxidized by AsF₅ quantitatively to the bis(perfluoroalkylthio)nitronium salt $(F_3CS)_2N^+AsF_6^-$ (2) (eq. 5). Salt 2 shows very good solubility in SO₂, a bright yellow color, and melts without decomposition at 170°C. Its structure is assumed to be cis/cis as it is found in its halide analogs XSNSX^{+[1,5]}. A cis/trans orientation of the F₃C groups is not likely, due to a single singlet in the ¹⁹F-NMR spectrum recorded at ambient temperature. Halide ions (F-, Cl-, Br⁻, I⁻) react fast with the cation of 2 without generation of $(F_3CS)_2N-X$ or $F_3CS-N=S(X)CF_3$ but with formation of decomposition products (N2, F3CSSCF3, F3CSCl, Br2, I_2). The stability of the molecules therefore is questionable, just as that of their halogenated analogs CIS-N=SCI(X) $(X = F, Cl)^{[5]}$.

$$4 \text{ NSF}_3 + 6 \text{ BCI}_3 \longrightarrow 2 \text{ (CIS)}_2 \text{N}^+ \text{ BCI}_4^- + \text{N}_2 + 3 \text{ CI}_2 + 4 \text{ BF}_3^{[1]}$$
 (1)

$$S=N=S^+ AsF_6^- \xrightarrow{X_2} XSNSX^+ AsF_6^- [7,8]$$
 (2)
 $SnCl_2/-SnCl_2X_2$ $X=Cl,Br$

$$CISNSCI^{+} + R-C = C-R \longrightarrow \begin{array}{c} RC \nearrow S \\ I \bigcirc S \\ RC \nearrow S \end{array}$$

$$R = H Me$$

$$R = H Me$$

In order to synthesize the smallest possible cyclic perfluoroalkyl-SNS cation $S=CF_2^{[12]}$ was treated with $SN^+AsF_6^{-[13]}$ (eq. 6). Under the conditions chosen, no [2 + 2] cycloaddition took place. This is probably due to an excessively high activation barrier, not to the instability of the strained ring itself as a comparison with similar carbenium ions indicates^[10].

A. Haas, A. Waterfeld

The synthesis of an analogous five-membered cation by a symmetry-allowed [2 + 3] cycloaddition of $F_2C=CF_2$ to the $S=N=S^+$ cation was tried unsuccessfully by Shriver^[9,14]. This is in contrast to the facile addition of $H_2C=CH_2$ to the same cation^[15] (eq. 7) and is attributed to the poor donor abilities of tetrafluoroethene^[9].

2
$$(F_3CS)_3N^{[11]} + 3 AsF_5 \xrightarrow{SO_2} 2 (F_3CS)_2N^+ AsF_6^- + (F_3CS)_2 + AsF_3 (5)$$
1 2 m.p. 170 °C

$$N=S^{+}AsF_{6}^{-[13]} + S=CF_{2}^{[12]} \longrightarrow F_{2}C \setminus S N^{+}AsF_{6}^{-}$$
 (6)

$$(F_2CSCI)_2^{[16,17]} + 3 NH_3 \xrightarrow{CFCI_3/-90 \text{ °C}} F_2C \xrightarrow{S} N-H + 2 NH_4CI$$
 (8)

In a different approach to that cation we have synthesized $S-CF_2-CF_2-S-N-H$ (3) from $(-CF_2-S-Cl)_2^{[16,17]}$ and NH₃ (eq. 8). N-Substituted derivatives of 3 have been prepared earlier from the same precursor and silylated amines^[18].

Compound 3 shows two spectroscopic properties, which differ substantially from those of its acyclic analog (F₃CS)₂NH^[11,19]. The N-H stretching frequency is reduced by 104 wavenumbers to 3320 cm⁻¹ in 3. Secondly, the ¹J(H¹⁵N) value is reduced in the latter from 99.1^[20,21] to 73.5 Hz. Both features indicate a change in nitrogen hybridization from sp² in (F₃CS)₂NH to sp³ in 3. This interpretation has been confirmed by a combination of gas diffraction, X-ray diffraction, and ab initio study^[22], which reveals that the most stable conformation of 3 is the "envelope" type with one sulfur bent out of an essentially planar C₂SN fragment. The nitrogen atom in 3 has a pyramidal environment with the N-H bond in axial position.

Unlike $S-CF_2-CF_2-S-N-Si(CH_3)_3$ which failed to react with $S_2Cl_2^{[18]}$, the proton in **3** can be replaced by $F_3CSCl_2^{[23]}$ or $(F_2CSCl)_2$ to form **3a**, **b** (eqs. 9, 10). The result is a rare exception to the general rule that silylated amines react under milder conditions giving higher yields than amines themselves. Compounds **3a** and **3b** are stable at ambient temperatures, decompose near $100^{\circ}C$, and like **1** do not form adducts with $BCl_3^{[11]}$. When **3a** is treated with AsF_5 , $S-CF_2-CF_2-S-N+AsF_6$ (**4**) is formed in ca. 50% yield (determined by $^{19}F-NMR$ spectroscopy) (eq. 11). The

second major product 5 is likely to have the displayed structure, based on NMR spectroscopy and its chemistry.

The branching of this reaction can be understood by assuming a single-electron oxidation as the initial step. The formed radical cation $\{3a^{+\bullet}\}$ can then split an exocyclic N-S bond homolytically to produce an F_3CS^{\bullet} radical and the cation of 4. The dication of 5 results from radical combination of two $\{3a^{+\bullet}\}$ ions via two ring-membered sulfur atoms (eq. 12). An acyclic structure of 5 like $(F_3C-SNS^+-CF_2-CF_2-S-)_2$ is ruled out, since it needs a ${}^1J(CF_3)$ coupling constant in the range of 322-330 Hz as it is found with 2 and other comparable cations ${}^{[10,24,25]}$. The additional production of 2 in this reaction shows that other and more complicated steps may follow the initial formation of a radical cation.

The yield of 4 can be improved to some extent by prolonged warming of the dry crude product to 80°C, whereby 5 is slowly converted to 4 and (F₃CS)₂ which is identified by its gas IR spectrum (eq. 13). This procedure does not afford a pure material but confirms the assumed structure of 5.

$$3 + F_3 CSCI^{[23]} + NMe_3 \xrightarrow{CFOl_3} F_2 C \xrightarrow{S} N-SCF_3 + Me_3 NHCI (9)$$

23 +
$$(F_2CSCI)_2$$
 + 2 NMe₃ $\xrightarrow{CFCI_3}$ $(F_2C \xrightarrow{S} N-SCF_2-)_2$ + 2 Me₃NHCI (10)

$$3a \xrightarrow{AsF_{5} \text{ exc.}} F_{2}C - S \\ F_{2}C - S \\ N^{+} AsF_{6}^{-} + S \\ - S$$

$$3a - e^{-} \qquad \{ F_{2}C - S \\ F_{2}C - S \}^{+} \qquad \qquad \begin{bmatrix} 3aI \\ - SOF_{3} \end{bmatrix}$$
 (12)

$$5 \xrightarrow{100 \text{ }^{\circ}\text{C}} 2 4 + (F_3CS)_2$$
 (13)

$$3 + 3 \text{ AsF}_5 \xrightarrow{\text{SO}_2} 4 + \text{HAsF}_6 + \text{AsF}_3$$
 (14)

Pure 4 is finally accessible by the reaction of 3 with AsF_5 (eq. 14). The crystalline crude product of this reaction appears clean in color, had the exact calculated weight, and gives a good elemental analysis. The ¹⁹F-NMR analysis however shows only a 70% conversion to 4 together with two impurities, the smaller of them containing a C_2F_5

group, the other appearing as a polymer due to the broadness of its signals. Recrystallization from SO₂/SOCl₂ gives pure 4 in 54% recovered yield. Compound 4 has a pale yellow color, dissolves less well than 2 in SO₂ and melts at 210°C (dec.).

The ¹⁹F- and ¹³C-NMR data are compiled in Table 1. The chemical shifts of the ¹⁹F and ¹³C nuclei are found in their typical ranges and show no effect on ionization. The ¹J(C,F) coupling in **2** however is increased drastically by 12.9 Hz compared to its neutral precursor **1**, considered the total range of coupling constants in F₃CS derivatives is 307–330 Hz. In the case of **4** a similar trend is found, but exact numbers cannot be given due to the complexity of the AA'BB'X-type spectrum. The missing of a ³J(F,F) coupling between the adjacent CF₂ groups in **5** is not in contradiction to the proposed structure since ³J couplings occasionally are very small like in **3b**, where only the ¹³C satellites of the CF'₂ groups are split into triplets.

The new title species are readily accessible as shown above. In contrast to their halogenated analogs, where only ¹⁴N- and ¹⁵N-NMR spectroscopy are of some use for their

investigation in solution^[27], they contain spin 1/2 nuclei of higher abundance and sensitivity. This allows an easier and more detailed study of the chemistry of this very electrophilic cationic species. The ongoing interest in sulfur-nitrogen chemistry^[28] is likely to make use of the redox behavior as well as cycloaddition and electrophilic substitution potential of the new materials.

Experimental

All experiments were carried out in oven-dried glassware with strict exclusion of moisture. Volatile materials and solvents were transferred in vacuo, solids in an argon glove box. – Raman: Bruker FRA 106 connected to IFS 66, Nd YAG laser, $\lambda = 1064$ nm. – IR: Bruker IFS 66 or 85. – NMR: Bruker WP 80 or AM 400. Covalent compounds were recorded as 20-40% solutions in CDCl₃ with CFCl₃ as internal ¹⁹F standard, salts as 15-30% solutions in SO₂ with the inner-tube method and external lock and standard (¹⁹F) or without lock (¹³C). Chemical shifts were referenced to TMS. The ¹⁵N-NMR spectrum was acquired at natural abundance by a DEPT experiment using NH_4NO_3 in D₂O as external standard. – MS: Varian MAT CH7A, 70 eV. – Elemental analyses: Carlo Erba 1106 elemental analyzer, Mikroanalytisches

Tab. 1. ¹⁹F- and ¹³C-NMR data of cyclic and acyclic perfluoroalkylthio molecules and cations

Compound	¹⁹ F-NMR data [ppm, Hz]		¹³ C-NMR data [ppm, Hz]			
No.	CF ₃	CF ₂	CF ₂	CF ₃	CF ₂	CF ₂ '
(F ₃ CS) ₃ N	-52.1 (s) ^[a]	_	_	130.0 (q)	-	_
1	6 J(F,F) = 3.6 ^[b]	_	_	⁶ J(C,F) = 315.7		
(F ₃ CS) ₂ N ⁺	-54.6 (s)	_	_	125.2 (q)		
2	$^{6}J(F,F) = 0.4^{[b]}$		_	¹ / _J (C,F) = 328.6		_
(-F ₂ CSCI) ₂		-89.5 (s)	_	. -	122.8 (m)	_
SCF2CF2SNH	***	-97.7 (d)		-	132.4 (t, t)	_
3	_	⁴ J(F,H) = 1.8		-	¹ /(C,F) □ 299.0	_
		3 J(F,F) = 3.9 ^[b]	-	-	² J(C,F) □ 26.0	Mana
SCF2CF2SNSCF3	-53.3 (quint)	-97.3 (s)	_	126.64 (q)	132.4 (t, t)	_
За	⁶ J(F,F) = 0.6	$(\Delta v 1/2^{[c]} = 2)$	_	¹ <i>J</i> (C,F) = 310.7	¹ J(C,F) □ 302.1	_
	_	$^{3}J(F,F) = 3^{[b]}$	_		² J(C,F) = 26.1	_
(SCF2CF2SNSCF2-)2		-96.95 (s)	-97.4 (s)		132.2 (t,t)	123.1 (t,t)
3ь	_	$(\Delta v 1/2 = 3.5)$	(Av 1/2 = 1.8)		¹ / _(C,F) = 302.2	¹ J(C,F) = 294.4
	_	-	³J(F,F) □ 10 ^[b]	-	2 J(C,F)=26.2	² J(C,F) = 34.3
(SCF ₂ CF ₂ SN) ⁺	_	-97.8 (s)	****		125.6 (m)	_
4 (CF ₂ CF ₂ SNS ⁺ -) ₂	-45.85 (t, t)	-87.7 (q) ^[d]	-91.4 (s) ^[d]	128.45 (g)	123.9 (t, t) ^[d]	121.7 (t, t) ^[d]
F_3 CS	⁶ J(F,F) = 5.3	⁶ J(F,F) = 5.3	$(\Delta v 1/2 = 15)$	¹ / ₂ (C,F) = 314.8	¹ / _U (C,F) = 313.3	-
5	⁶ J(F,F) = 2.0		— — — — — — — — — — — — — — — — — — —		² J(C,F) = 39.6	

[[]a] Data are in agreement with literature values [11,26]. - [b] Derived from ¹³C satellites. - [c] $\Delta v_{1/2}$: peak widths at half height. - [d] Not assigned.

Laboratorium Beller, Göttingen (2). — The compounds NH_3 (Messer Griesheim), ND_3 (Merck & Co., Can.), and BCl_3 (J. T. Baker, Ned.) were used as received. $CFCl_3$ (Hoechst AG) and SO_2 (Messer Griesheim) were dried over P_4O_{10} , Me_3N was dried over KOH before use. AsF_5 was prepared from As (Preussag) and F_2 (Solvay, Ger.); $1^{[11]}$, $S=CF_2^{[12]}$, $N\equiv S^+AsF_6^{-[13]}$, $(F_2CSCl)_2^{[16,17]}$, and $F_3CSCl^{[23]}$ were prepared according to literature procedures.

Bis(trifluoromethylthio)nitronium Hexafluoroarsenate (2): Into a 200-ml Carius tube equipped with a teflon-stemmed Young valve 8.5 g (26.8 mmol) of 1, 7.1 g (42 mmol) of AsF₅, and ca. 30 g of SO₂ were condensed at -196° C. After 20 h at room temp. a clear solution with an intense yellow color developed. After the volatile products had been pumped off [AsF₅, AsF₃, (F₃CS)₂, and SO₂], 10.9 g of 2 remained in quantitative yield as a bright yellow microcrystalline solid, m.p. 170°C. – IR: \tilde{v} = 1264 cm⁻¹ s, 1244 vs, 1214 s, 1112 vs, 1036 vs, 757 s, 713 s, 699 vs, 675 vs, 561 w, 473 m. – Raman: \tilde{v} = 1127 cm⁻¹ vw, 1029 w, 769 s, 723 s, 681 s, 578 w, 557 w, 475 m, 369 w, 341 w, 254 vs, 178 m, 114 vs, 83 m. – MS, m/z (%): 216 (14), 163 (10), 151 (71), 132 (14), 113 (12), 94 (11), 78 (34), 69 (100), 63 (13), 46 (62). – C₂AsF₁₂NS₂ (405.1): calcd. As 18.50, N 3.46, S 15.8; found As 18.6, N 3.46, S 16.3.

Attempted Preparation of $F_2C-S-N-S^+AsF_6$: Into a Carius tube, loaded with 3.6 g (15 mmol) of $N=S^+AsF_6$, 1.3 g (16 mmol) of $S=CF_2$ and ca. 15 g of SO_2 were condensed at $-196^{\circ}C$, and the mixture was allowed to warm up. The clear solution was kept for 5 h at ambient temp. after which time no change of color was observed. After the volatile products had been pumped off 3.6 g of unchanged $N=S^+AsF_6$ was recovered.

4,4,5,5-Tetrafluoro-1,3,2-dithiazolidine (3): 6.8 g (29 mmol) of (F₂CSCl)₂ and 126 g of CFCl₃ were condensed into a 300-ml Carius tube at -196°C, then warmed up to -90°C by means of an ethanol cooling bath giving a clear greenish solution. The Carius tube was connected to a vacuum line of ca. 250 ml volume by means of a flexible Teflon hose. From a lecture bottle ca. 500 mbar of NH₃ were filled into the line, then the valve of the Carius tube was opened. This procedure was repeated interruptedly by vigorous shaking of the tube. When a total of 1.6 g (94 mmol) had been added, the produced slurry was allowed to warm to room temp. Vacuum fractionation into -78, -196, and -196°C traps yielded 4.4 g (85%) of 3 as colorless crystals in the -78°C trap, m.p. -35°C, vapor pressure at 0°C: 6 mbar. In the Carius tube remained 3.7 g of a colored residue. The CFCl₃ was resuable for similar experiments. – IR (gas): $\tilde{v} = 3320 \text{ cm}^{-1} \text{ m}$, 1229 vs, 1138 vs, 1112 s, 975 s, 923 m, 901 m, 793 s, 648 m. - ¹H NMR: $\delta = 4.8$ (s, $\Delta v_{1/2} = 23 \text{ Hz}$, ${}^{1}J(H, {}^{15}N) = 73.5 \text{ Hz}$. $- {}^{15}N \text{ NMR (CD}_{2}\text{Cl}_{2})$: $\delta =$ 12.7 (s). - MS, m/z (%): 179 (100) [M⁺], 100 (35), 97 (33), 96 (33), 82 (34), 69 (20), 64 (22), 63 (46), 47 (70), 46 (52), 31 (25). C₂HF₄NS₂ (179.1): calcd. C 13.41, H 0.56, N 7.82, S 35.77; found C 13.3, H 0.6, N 8.0, S 35.1.

[D]-3: From $(F_2CSCl)_2$ and ND_3 the *N*-deuterated 3 was obtained in a similar procedure and yield. – IR (gas): Same as 3, except: $\tilde{v} = 3320 \rightarrow 2464 \text{ cm}^{-1} \text{ m}$, $901 \rightarrow 778 \text{ m}$, $648 \rightarrow 603 \text{ m}$.

4,4,5,5-Tetrafluoro-2-(trifluoromethylthio)-1,3,2-dithiazolidine (3a): To a solution of 6.2 g (34.6 mmol) of 3 and 4.7 g (34.4 mmol) of F_3 CSCl in ca. 100 g of CFCl₃ in a Carius tube kept at -80° C, Me₃N was added in small portions (ca. 0.1 g). After each addition the mixture was shaken. After a total of 2.1 g (36 mmol) of Me₃N had been added the tube was allowed to warm to ambient temp. Vacuum fractionation into -78, -196, and -196° C traps yielded 9.1 g of crude 3a in the -78° C trap and 3.8 g of nonvolatile material. For further purification the crude 3a was treated with 1.5 g (13 mmol) of BCl₃ at room temp. and then objected again to vacuum

fractionation (-78, -196°C). 1.0 g of nonvolatile products was left behind, and 8.1 g (84%) of solid **3a** was obtained in the dry-ice trap. Compound **3a** contained a trace of **1** (ca. 1%, determined by 19 F-NMR analysis) as a result of scrambling, but was not further purified, m.p. -54°C (ca. 99% pure), vapor pressure at 24°C: 18 mbar. – IR (gas): $\tilde{v} = 1230$ cm⁻¹ s, 1190 s, 1176 s, 1144 s, 1129 vs, 970 s, 923 m, 763 w, 638 w, 481 w. – MS, m/z (%): 279 [M⁺] (54), 178 (84), 147 (11), 110 (14), 100 (13), 82 (36), 78 (85), 69 (100), 64 (20), 63 (28), 46 (49). – $C_3F_7NS_2$ (279.2): calcd. C 12.91, N 5.02; found C 12.7, N 5.5.

2,2'-[(1,1,2,2-Tetrafluoro-1,2-ethanediyl)bis(thio)]bis[4,4,5,5tetrafluoro-1,3,2-dithiazolidine] (3b): 4.4 g (24.6 mmol) of 3, 2.9 g (12.3 mmol) of (F₂CSCl)₂, and 1.5 g (25 mmol) of Me₃N were allowed to react as described for 3a. After the volatile products had been pumped off 8.8 g of a solid was left behind, which was treated for 16 h with 3.4 g (29 mmol) of BCl₃ at room temp. without solvent. BCl₃ was absorbed almost quantitatively yielding 12.1 g of nonvolatile material from which 5.7 g was transferred to a 100-ml flask for sublimation at 10^{-2} mbar/60°C giving 1.1 g of crude 3b. Recrystallization from 5 g of CH₂Cl₂ by cooling a filtered solution of 3b slowly to -50°C produced 0.8 g (26%) of colorless, crystalline **3b**, m.p. 56° C. – IR (KBr pellet): $\tilde{v} = 1400 \text{ cm}^{-1} \text{ vw}$, 1216 s, 1207s, 1158 s, 1147 s, 1127 s, 1099 vs, 1021 vw, 960 s, 918 s, 860 vw, 833 m, 816 m, 635 w, 606 w, 576 w, 466 w, 421 w. – Raman: $\tilde{v} = 1232$ cm⁻¹ vw, 1080 vw, 813 w, 784 w, 675 w, 638 m, 565 w, 508 vs, 463 w, 430 m, 392 w, 360 w, 324 w, 290 w, 243 w, 226 m, 198 m, 88 m. - MS, m/z (%): 506 [M⁺] (12), 210 (9), 178 (100), 164 (25), 82 (16), 78 (64), 64 (35), 63 (18), 46 (31). $-C_6F_{12}N_2S_6$ (520.5): calcd. C 13.85, N 5.38, S 36.97; found C 13.7, N 5.0, S 36.2.

4,4,5,5-Tetrafluoro-1,3,2-dithiazolidinium Hexafluoroarsenate (4) and 4,4,4',4',5,5,5',5'-Octafluoro-2,2'-bis(trifluoromethylthio)-1,1'-bi-1,3,2-dithiazolidin-1-ium Bis(hexafluoroarsenate) (5) from 3a: The reaction of 3.14 g (11.3 mmol) of 3a with 3.1 g (18 mmol) of AsF₅ according to the procedure used for the preparation of 2 (with the exception of a shorter reaction time = 3 h) yielded 4.76 g of an orange nonvolatile solid. Heating of the dry crude product to 85°C for 6 d caused slow release of (F₃CS)₂, which was identified by its gas IR spectrum. The ¹⁹F-NMR spectrum of the heated material showed besides the broad AsF₆ quartet at $\delta = -58$ and traces of impurities only two singlets at $\delta = -53.0$ (2) and -97.3 (4). — A similar NMR-tube experiment starting with 0.12 g of 3a showed besides a broad signal centered at $\delta = -58$ (AsF₆) and singlets for 2 and 4 three major signals attributed to 5, corresponding to 25 mol-% relative to 4 (see Table 1).

4,4,5,5-Tetrafluoro-1,3,2-dithiazolidinium Hexafluoroarsenate (4) from 3: Into a Carius tube 1.74 g (9.7 mmol) of 3, 5.1 g (30 mmol) of AsF₅, and ca. 20 g of SO₂ were condensed at -196°C. When warming up the mixture, an intense red color occurred, which faded to yellow after 2 h at 0°C. Removal of the volatile products (SO₂, AsF₃, HAsF₆) left 3.57 g of a yellow microcrystalline solid. Its ¹⁹F-NMR spectrum showed besides a broad signal at $\delta = -59$ (AsF_6^-) signals at -82.4 (t, J = 2.6 Hz, 7%), -87.3 to -89.3 (m, broad, 18%), -95.6 (q, J = 2.6 Hz, 5%) and 97.7 (s, 70%). For recrystallization 2.50 g of the crude product was placed in one limb of a two-limbed glass vessel and dissolved in ca. 17 g of SO₂. The solution was cooled to dry-ice temp. without the formation of a precipitate. Then 6 g of SOCl₂ was condensed onto the solution kept at -78°C for 4 h. After warming of the solution to ambient temp. - avoiding any shaking of the vessel - a red solution over a yellow precipitate was obtained. The solution was carefully transferred to the empty limb of the vessel, then concentrated to dryness by evaporation of the solvent. The yellow crystalline precipitate amounted to 1.35 g and proved to be pure 4, yield 54%, m.p. 210°C (dec.) – IR (nujol): $\tilde{v} = 1233 \text{ cm}^{-1} \text{ s}$, 1225 s, 1205 s, 1158 s, 1025 s, 922 m, 868 m, 753 m, 721 vs, 698 vs, 622 w, 614 w, 585 w, 515 w. - Raman: $\tilde{v} = 1226 \text{ cm}^{-1} \text{ vw}$, 1029 vw, 924 vw, 868 vw, 752 vs, 684 s, 623 w, 581 vw, 572 vw, 512 m, 400 vw, 379 vs, 323 vw, 269 w, 235 vw, 82 m. - MS, m/z (%): 178 (59), 164 (28), 151 (100), 148 (36), 132 (44), 129 (14), 113 (62), 100 (30), 95 (17), 94 (20), 82 (45), 78 (72), 69 (21), 64 (51), 63 (44), 50 (12), 48 (48), 47 (43), 46 (46). - C₂AsF₁₀NS₂ (367.1): calcd. C 6.54, N 3.83, S 17.47; found C 6.4, N 4.0, S 17.6.

O. Glemser, J. Wegener, Inorg. Nucl. Chem. Lett. 1971, 7,

[3] R. Mews, Angew. Chem. 1976, 88, 757-758; Angew. Chem. Int. Ed. Engl. 1976, 15, 691.

[4] G. G. Alange, A. J. Banister, P. J. Dainty, *Inorg. Nucl. Chem. Lett.* 1979, 15, 175–178.

[5] O. Glemser, E. Kindler, B. Krebs, R. Mews, F.-M. Schnepel, J.

Wegener, Z. Naturforsch., Teil B, 1980, 35, 657-660.

[6] B. Ayres, A. J. Banister, P. D. Coates, M. I. Hansfort, J. M. Rawson, C. E. F. Rickard, M. B. Hursthouse, K. M. A. Malik, M. Montevalli, J. Chem. Soc., Dalton Trans. 1992, 3097-3103.

[7] W. V. F. Brooks, G. K. MacLean, J. Passmore, P. S. White, C.-

M. Wong, J. Chem. Soc., Dalton Trans. 1983, 35, 1961-1968.
A. J. Banister, J. M. Rawson, J. Chem. Soc., Dalton Trans. **1990**, 1517.

S. Parsons, J. Passmore, M. J. Schriver, P. S. White, Can. J. Chem. 1990, 68, 852-862.

[10] R. Boese, A. Haas, C. Krüger, G. Möller, A. Waterfeld, *Chem. Ber.* **1994**, *127*, 597-603.

[11] A. Haas, P. Schott, Chem. Ber. 1968, 101, 3407-3418.

[12] W. J. Middleton, E. G. Howard, W. H. Sharkey, J. Org. Chem. **1965**, *30*, 1375–1384.

[13] O. Glemser, W. Koch, Angew. Chem. 1971, 83, 145-146; Angew. Chem. Int. Ed. Engl. 1971, 10, 127.

[14] M. J. Schriver, Ph. D. Thesis, University of New Brunswick, Fredericton, 1988.

[15] N. Burford, J. P. Johnson, J. Passmore, M. J. Schriver, P. S. White, J. Chem. Soc., Chem. Commun. 1986, 966-968.
[16] C. G. Krespan, W. R. Brasen, J. Org. Chem. 1962, 27,

3995-4000.

[17] C. G. Krespan (E. I. du Pont de Nemour & Co), U.S. Pat. 1960/

1963, 3,099,688; *Chem. Abstr.* 1964, 60, 1597c-g.

[18] H. W. Roesky, A. Thiel, M. Noltemeyer, G. M. Sheldrick, *Chem. Ber.* 1985, 118, 2811-2821.

[19] H. J. Emeleus, S. N. Nabi, J. Chem. Soc. 1960, 1103-1108

[20] A. H. Cowley, J. R. Schweiger, Chem. Commun. 1970, 1492-1493.

[21] A. H. Cowley, J. R. Schweiger, J. Am. Chem. Soc. 1973, 95, 4179-4185.

[22] R. Boese, H. Oberhammer, P. Pulay, A. Waterfeld, J. Phys. Chem. 1993, 97, 9625–9629.

[23] C. W. Tullock, D. D. Coffman, J. Org. Chem. 1960, 25, 2016 - 2019.

[24] A. Haas, W. Wanzke, Chem. Ber. 1987, 120, 429-433.

[25] A. Waterfeld, Chem. Ber. 1990, 123, 1635-1640.

J. Marsden, L. S. Bartell, J. Chem. Soc., Dalton Trans. **1977**, 1582-1588.

^[27] J. Passmore, M. J. Schriver, *Inorg. Chem.* 1988, 27, 1749-1751. [28] S. Parsons, J. Passmore, Acc. Chem. Res. 1994, 27, 101-108.

[353/94]

^[1] O. Glemser, B. Krebs, J. Wegener, E. Kindler, Angew. Chem. 1969, 81, 568; Angew. Chem. Int. Ed. Engl. 1969, 8, 598.